Accepted Manuscript

Cannabinoids, interoception, and anxiety

Allyson K. Andrade, Briana Renda, Jennifer E. Murray

PII: S0091-3057(18)30386-1
DOI: https://doi.org/10.1016/j.pbb.2019.03.006
Reference: PBB 72705
To appear in: Pharmacology, Biochemistry and Behavior

Received date: 1 August 2018
Revised date: 14 February 2019
Accepted date: 22 March 2019

Please cite this article as: A.K. Andrade, B. Renda and J.E. Murray, Cannabinoids, interoception, and anxiety, Pharmacology, Biochemistry and Behavior, https://doi.org/10.1016/j.pbb.2019.03.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Cannabinoids, interoception, and anxiety

Allyson K. Andrade, Briana Renda, & Jennifer E. Murray

Department of Psychology, University of Guelph, Guelph, ON, Canada

To whom correspondence should be addressed:
Jennifer E. Murray
University of Guelph
Department of Psychology
50 Stone Road East
Guelph ON N1G 2W1
jmurr@uoguelph.ca
Abstract

The use of cannabis is rapidly gaining legal status across North America. Such dramatic legislative shifts have prompted an urgency in elucidating the stimulus effects of cannabis consumption. Cannabis use, though relatively safe compared to other drugs of abuse, has been associated with greater risk of mental health disorders, possibly via its primary psychoactive constituent, Δ-9-tetrahydrocannabinol (THC). In this review, we discuss endocannabinoid activation and cannabis constituents from the perspective of subjective interoceptive (internally-perceived) states and how that relates to anxiety. Human studies have examined these subjective effects through use of self-report questionnaires. However, non-human studies use proxy methods of assessing anxiety states, such as elevated plus maze and fear conditioning paradigms. So far, this body of research has demonstrated that both endogenous and exogenous cannabinoid activation generally elicits biphasic effects on expression of the subjective state, with lower doses appearing to have anxiolytic properties and higher doses perceived as anxiogenic. Unfortunately, research with these compounds has been historically limited due to excessively tight regulatory control. Therefore, much work remains regarding the investigation of interactions between cannabinoid receptor activity and cannabis constituents on anxiety. Ongoing changes in legal status will hopefully mitigate the challenges faced by researchers attempting to access cannabis and THC that is inherently built in by federal and international classifications.

Keywords
cannabis; tetrahydrocannabinol; interoception; anxiety; insula; conditioning
1. **Shifting Views on Cannabis**

The rapidly changing sociopolitical shifts in attitude toward cannabis in recent years are in many ways reflective of accounts of cannabis use across history. Policy changes including decriminalization and legality are, in part, an acknowledgement that the recreational value of cannabis to society may outweigh its costs (1). Furthermore, such policy changes also indicate an acceptance of the value of research investigating the interactions between exogenous and endogenous cannabinoids, the endocannabinoid (eCB) system, and the behavioural outcomes evoked by the subjective experience of the drug. Additionally, these modifications to policies help facilitate and encourage research in this field, which has been particularly challenging given federal and international classification schemes (2–5). In light of the historical background, the purpose of the current review is to discuss what is known about the mechanisms mediating the effects of specific endogenous and exogenous cannabinoids, the resulting subjective experience, and how this relates to anxiety.

Known today primarily for its ability to induce a relaxed, euphoric state, cannabis has an extensive history. It is thought to have begun during the rise of the Chinese empire in which it was cultivated primarily for hemp fibres, and the fruits and seeds were used for medicinal purposes including treating rheumatic pain, constipation, and malaria as well as anesthesia during surgery (6). As the use of cannabis spread throughout Asia, the Middle-East, and Europe, its psychotropic qualities perpetuated its recreational use. It was also at times an entheogen paired with religious rituals, and in India was considered sacred as it was a “source of happiness, donator of joy, and bringer of freedom” (6, 7). By the 1800s, cannabis was being traded throughout the world including North America. However, at the beginning of the 1900s, attitudes toward the plant began to change as it was increasingly treated as a drug among others, including alcohol and opiates (6, 8). Further, its impending illegality included deep motivations of institutionalized racism that contributed to the U.S. Federal Bureau of Narcotics labelling cannabis as an addictive substance and the plant becoming federally restricted around the time of the 1930s (8, 9). By the 1960s, the international community followed suit, with the United Nations creating the International Narcotics Control Board, which, in turn, classed cannabis as a Schedule I substance (8). This classification legally declared cannabis as having the purportedly highest level of abuse potential with no medicinal use, and it resulted in excessive undue burden on scientific investigation that is a continuing problem today (2–5).
Gradually, clinicians, caregivers, and individuals struggling with debilitating illnesses such as AIDS and cancer began raising awareness about the feasibility of medicinal cannabis. What began as an underground, grassroots movement with little credibility slowly and steadily accelerated until the pressure reached a tipping point. Finally, the first state to criminalize cannabis, California, also became the first state to permit medical cannabis prescriptions through the enactment of the Compassionate Use Act which ultimately paved the way for surrounding states to do the same (8, 9). Since then, the push for the legalization of cannabis for both medicinal and recreational purposes has spread throughout North America, including Canada where complete legalization has recently been enacted in spite of the violations of international law (8, 10, 11). There has been a parallel rise in research related to the impact of cannabis on various diseases (12–14). Cannabis use regulates nausea and vomiting in patients receiving cancer treatment, ameliorates the impact of epilepsy by reducing the frequency of seizures, and for people living with HIV/AIDS, smoking cannabis is a common method of treating various symptoms including stress, loss of appetite, weight loss, nausea, pain and vomiting (15–17). Despite the growing body of evidence revealing the ability of cannabis to target specific brain pathways to relieve symptoms of certain illnesses, its influence on non-specific pathways and the potential to promote adverse side effects is largely unknown and requires more attention (16, 18).

Beyond the medical benefits, rapidly-shifting legislation of the legality of recreational cannabis has sparked important conversations regarding the risks associated with its use. Such risks include increased rates of cannabis use disorder, potential impacts on cognition and neural development, increased abuse by adolescents and subsequent impact on academic performance and lifetime achievement, interactions between cannabis consumption and severe mental illness (e.g. schizophrenia), greater involvement in motor-vehicle accidents, and more broad effects on health and safety (14, 19–25). There is also some intriguing conflicting speculation that cannabis legalization itself may play a key role in the current opioid crisis. For example, one study found that between 2011 and 2016, medical and recreational cannabis laws were associated with lower opioid prescribing rates (26). In contrast, cannabis use has also been associated with the initiation or increase in illicit opioid use (27). Therefore, more work on the factors that may contribute to the ‘substitutability’ of cannabis for opioids is clearly warranted (28). Finally, the subjective biphasic nature of cannabis effects has also gained increased attention recently in light of policy changes. A high dose of the primary psychoactive constituent of cannabis, Δ-9-
tetrahydrocannabinol (THC) (29), is associated with anxiogenic responses, whereas a lower dose of THC is anxiolytic (30), exemplifying the need for research that emphasizes and compares dose-dependent effects of THC in cannabis. Indeed, depending on the individual, variations in dose or method of consumption may provoke an unexpected response that can result in unpleasant, or potentially more serious, mental health risks such as anxiety disorders or psychosis (31, 32). With the recent legalization of recreational cannabis across Canada and the steady state-by-state legalization in the United States, the need to understand how the effects of cannabis impact how humans interact with the world has become far more urgent (8, 21, 33). Unfortunately, access to cannabis for research is still quite limited given its technical federal illegality in the USA and its classification by the UN, though appeals for increased research are becoming more prevalent (2–5).

2. **Endocannabinoid System**

Despite an extensive history of use, rigorous cannabis research only began fairly recently during the 1960s with investigation of the mechanisms underlying its reported effects. Constituents of cannabis were isolated, including THC, which was identified as the primary psychoactive component of the plant (29). THC was then used to help identify receptors, receptor localization, subtypes, and endogenous ligands (endocannabinoids; eCBs) (34, 35). In this review, we discuss most specifically the mechanisms underlying the role of the eCBs in anxiety. Though extensive description of the eCB system as a whole is outside the scope of the current paper, we refer the reader to any of the following reviews on the subject from a range of perspectives including development, drug discovery, addiction, reward, stress, and mental health (3, 12, 44–53, 36, 54, 55, 37–43).

2.1 **Receptors**

CB receptors are among the most abundant G-protein coupled receptors (GPCRs) in humans, and to date, they are typically divided into two main groups (38). The first are cannabinoid 1 (CB1) receptors which are primarily distributed throughout the central nervous system (CNS), spanning across various regions including the cortex, basal ganglia, hippocampus and the cerebellum. Receptor localization is of particular importance for understanding receptor function in this system. Specifically, CB1 receptors are primarily localized presynaptically on
GABAergic neurons (56), indicating a neuromodulatory role of eCBs. The release of eCBs is triggered as a result of postsynaptic excitation (57) and this retrograde signaling activates these presynaptic CB₁ receptors, inhibiting subsequent neurotransmitter release from the presynaptic terminal (58, 59). CB₁ receptor activation has been shown to inhibit adenylyl cyclase (53, 60), ultimately resulting in decreased cAMP production. Thus, activation of these receptors can have different effects depending on localization and have been implicated in anxiety, emotional behaviours, and the neuroendocrine response (61–63). Indeed, there are several studies indicating a bidirectional role of the eCB system in the anxiety response dependent on CB₁ receptor localization (63–65).

The second primary eCB receptor, cannabinoid 2 (CB₂) receptors, are expressed at lower levels relative to CB₁ receptors and have been implicated in peripheral and central immune system maintenance (66, 67). Like CB₁ receptors, CB₂ receptors are also activated by endogenous and exogenous ligands and function by inhibiting the activity of adenylyl cyclase (53, 68). Recent evidence shows that CB₂ receptors are also implicated in anxiety-related behaviours (69–72). Furthermore, dysfunction of CB₂ receptors has been related to other psychiatric disorders including schizophrenia, depression, and addiction (37, 55, 73–75). These studies indicate that CB₂ receptors indeed play a significant role in neuropsychiatric disorders and highlight the need to further consider how CB₂ impacts CNS function.

There is also evidence of CB receptors distinct from CB₁ and CB₂ (76–81). G-protein coupled receptor 55 (GPR55) and G-protein coupled receptor 119 (GPR119) are two examples of GPCRs that have been suggested as potential novel, atypical CB receptors (80). GPR119 is activated by anandamide (N-arachidonoyl ethanolamine, AEA) and the fatty acid oleylethanolamide (OEA) and its activation has been implicated in energy maintenance and body weight (76, 80). GPR55 is also activated by eCBs as well as several different types of synthetic CBs (80, 82). Though GPR55 utilizes distinct signalling systems from that known for CB₁ and CB₂ receptors, recent evidence of heteromerization with CB₁ and CB₂ receptors and its distribution throughout the CNS makes it the leading candidate for becoming the third official CB receptor (83). Furthermore, whereas most of the evidence points to GPR55 as a potential target to treat inflammation, there is also recent evidence for its role in modulating anxiety-related behaviour in animal models (84, 85).
2.2 Endogenous and Exogenous Ligands

The two most prevalent eCBs that have been studied the most to date include AEA and 2-arachidonoyl-glycerol (2-AG), however there are several other more recently-discovered eCBs including noladin ether (2-arachidonyl glyceryl ether; 2-AGE) (86), virodhamine (O-arachidonoyl ethanolamine; OAE) (87), and N-arachidonoyldopamine (NADA) (88). Further, lysophosphatidylinositol is a primary ligand to the GPR55 receptor, suggesting that it may qualify as yet another eCB (89). The distinct roles of these ligands in the eCB system are still unclear and yet to be fully elucidated. Given the prevalence of cannabis consumption, CB compounds found in cannabis (phytocannabinoids) are frequently investigated for their interaction with eCBs. For example, cannabigerol (CBG) is found in cannabis in moderate concentrations and is non-psychoactive (90). While it has a low affinity for CB receptors itself, CBG impacts eCB system by inhibiting AEA uptake (91). Importantly, CBG has been investigated for the treatment of various health conditions including inflammation (92, 93), neurodegenerative diseases (94, 95), and cancer (96–98). CBG also has antidepressant-like effects in rodents, is an α_2 adrenoceptor agonist and 5-HT$_{1A}$ receptor antagonist, making it a potential candidate to further explore its role in mental health (99, 100).

In addition to phytocannabinoids and eCBs, CB receptor agonists have been developed as analogs of THC (in most cases), making them synthetic CBs (101, 102). Synthetic CBs have structural similarities to THC, but are generally more potent given their greater affinity and full agonist effects on the CB$_1$ receptor (103). Though their development is aimed at facilitating exploration of potential medical uses targeting the eCB system and its receptors, these synthetic CBs are being used increasingly by adolescents who are under the impression that these drugs are comparable to cannabis, in that they provide safe highs (104, 105). In reality, mounting evidence reveals that synthetic CBs have the potential to elicit adverse physiological effects including acute kidney injury, tachycardia, seizures, nausea and vomiting and in some cases mortality. The adverse effects of synthetic CBs extend to psychiatric presentations including psychosis, hallucinations and paranoia, panic attacks and anxiety (104).

3. Interoception, Insula, and Cannabinoids

Both the adverse and appealing effects elicited by cannabis and CB consumption involve the explicit or implicit perception of the internal state. Such interoception includes physiological
(e.g., hunger) and emotional or affective (e.g., stress) states (106–108). Interoceptive signals evoke emotional responses that serve to motivate behavior. Homeostatic mechanisms shift from being initially implicit (subconscious), but can later transition to explicit (conscious) regulation when maintaining homeostasis requires a behavioral response (109–112). Increases in internal temperatures, for example, can lead to a physiological reaction such as perspiration as an attempt to regulate temperature changes. Such an implicit homeostatic response can lead to awareness of this change in interoceptive state (i.e., awareness of increased temperature) and elicit motivated behavior such as lowering the thermostat or removing one’s sweater. The neural basis of this dual processing of homeostatic regulation of temperature has been identified in rodent models. Rats with lesions of the hypothalamus – a region responsible for autonomic homeostatic maintenance – showed greater lever pressing for access to a heat lamp when exposed to low temperatures because they were no longer able to reflexively regulate their body temperature (113–115).

Therefore, the motivation for homeostatic temperature regulation is processed on multiple neural levels, from the hypothalamus as well as from the limbic system, implicated in Pavlovian associative processing and maintaining representations of action-related outcomes (110, 116). The eCB system is also involved in this implicit and explicit homeostatic processing. For instance, after short periods of food deprivation, eCB activity within the hypothalamus can regulate action of orexigenic and anorectic mediators that activate appetite through signaling effects of CB₁ receptors (117). The eCB system may then evoke goal-directed food-seeking behavior through interactions with limbic, motivational, and motor pathways involved in reward and reinforcement (118).

Such processing is also congruent with the James-Lange and Schachter-Singer theories of emotional regulation, which both hypothesize that the interpretation of interoceptive physiological changes guide the emotional response (119, 120). For example, upon seeing a bear, activation of the sympathetic nervous system (i.e., increased heart rate and breathing) is followed by an association of the physiological state with the surroundings, evoking an appropriate, consciously-recognized emotional label. In the Toronto Zoo, the emotional response will likely be labelled as excitement; in the forests of northern Ontario, those same physiological changes will likely be labelled as fear. In this type of situation, the insular cortex (IC) plays a crucial role in interpreting these interoceptive states (121, 122). Initially, interoceptive signals via the thalamus and association cortices connect at the posterior insula where lower-level sensory
features are processed (121, 123). The anterior insula then integrates this information with emotional and cognitive signals produced in the limbic and prefrontal cortical systems, respectively, leading to labelling motivated behaviors and providing a sense of ‘self’ (111, 121, 123, 124). The importance of the insula to interoception means that insular dysfunction disrupts motivational, emotional, and cognitive processes, leading to an aberrant interoceptive state suggesting major implications for the role of the IC in psychiatric disorders and mental illness (121, 125–127). Insular hyperactivity has been associated with affective and anxiety disorders (128–131) driven at least in part by the interconnectivity between the IC and the amygdala (132, 133). Abstinent cannabis users show reduced cortical grey matter and impaired insular function (134), and cannabis dependence or long-term cannabis use is associated with negative affective states and anxiety disorders (135–143). It has been proposed that the reduction of such negative affective states can act as a reinforcer for cannabis dependence. For instance, use of cannabis can be a coping mechanism for the negative feelings related to social anxiety and post-traumatic stress (144, 145). There is extensive research linking the eCB system with the stress-response system (48, 146–149), and eCBs are implicated in mood and anxiety disorders as well as motivation, reward, and addictive behaviors, emphasizing the need to target this system when considering comorbidity of anxiety disorders and cannabis use disorder (37, 150–153). Finally, CB receptors have been identified in the IC of both humans and rodents (154–156). Therefore, impaired insular function in cannabis use may interact with interoceptive disorders such as anxiety.

4. **Anxiety and the Endocannabinoid System**

The eCB system is of interest for drug development related to anxiety based on the system’s physiological and behavioral control over anxiety regulation (39, 157–159). Such regulation shows a dose-dependent biphasic effect. Rats given high doses of the synthetic CB₁ agonist CP 55,940 spent less time socializing immediately following exposure compared to subjects given low- or no-dose treatments. Moreover, the same rats exposed to those higher doses of CP 55,940 also expressed conditioned anxiety when tested the next day (160). High doses of CP 55,940 also produced similar anxiogenic responses on the EPM, however, lower doses produced an anxiolytic effect compared with controls, with those rats increasing the percent of time spent and entries into the open arms (161). The CB₁ inverse agonist SR141716A
induced anxiogenic responses in rats as measured by the defensive withdrawal test and EPM test (162). Anxiolytic effects were found in adult mice given synthetic CB₁ agonists AB-FUBINACA, AB-CHMINACA and PB-22 (163) as well as the CB₁ agonist WIN 55, 212 (59). Relation between synthetic CB use and affect and anxiety have also been explored in humans (104, 164, 165), however, the majority of these studies rely on self-report and individual case-report methods rather than relying on more objective approaches such as those available in animal models. The biphasic anxiogenic versus anxiolytic outcomes of synthetic CB administration in animal models and the lack of objective methods used in human studies demonstrate the need to further explore the potential for synthetic CB development for treatment of anxiety-related disorders.

The role of eCBs in anxiety has also been assessed. AEA hydrolysis is catalyzed by fatty acid amide hydrolase (FAAH). Mice lacking the FAAH gene are ultimately unable to metabolize AEA and tend to have enhanced levels of AEA occupying CB₁ receptor sites (166). Preventing AEA degradation by administration of FAAH inhibitors enhances AEA binding to CB₁ receptors and ultimately promotes anxiolytic-like responses in rodent models (167–169). Similarly, studies have shown an association between corticotropin releasing hormone (CRH) and increased anxiety via eCB modulation. Specifically, CRH signalling induces activity of FAAH and ultimately reduces AEA levels in the amygdala (159). This decrease of AEA binding to CB₁ receptors is correlated with anxiety-related behaviour or anxious phenotypes in both humans and rat models (159, 170). Similarly, 2-AG is metabolized by action of monoacylglycerol lipase (MAGL) and animals with overexpressed MAGL will effectively have lower levels of 2-AG in these areas. At glutamatergic synapses in the hippocampus, overexpression of MAGL in mice have provoked anxiety-like behaviours (171). Conversely, total genetic deletion of MAGL in the basolateral amygdala lead to overexcitation of CB₁ receptors by 2-AG, resulting in glutamate release into the medial prefrontal cortex and subsequent anxiogenic behavioural effects in mice (172). Based on these results, 2-AG regulatory action of eCB receptors plays a pivotal role in modulating anxiety-related behaviour as demonstrated in animal models. Elucidation of the regulatory control of eCB receptor activation by the metabolites of the eCB ligands, specifically within regions of the brain related to anxiogenic responses, shows therapeutic potential for treatment of anxiety disorders. This complexity of the biphasic anxiogenic versus anxiolytic outcomes of CB receptor activation by modulation of eCB metabolites in combination with the
importance of baseline levels of arousal on such outcomes (173) and evidence that eCB activity in the amygdala is responsible for coping strategy selection (157) highlight the need to disambiguate the relations among cannabis consumption, eCB signalling, and the interoception of subjective state.

5. **Anxiety and Phytocannabinoids**

The pharmacological effects associated with cannabis use varies among individuals, and this translates to variations in subjective and objective effects of the drug. Given the increasingly-legal status of cannabis, it is now more important than ever to consider both the potential therapeutic benefits of the drug as well as the possible risks associated with it. In general, individuals diagnosed with anxiety report using cannabis as a means of self-medication (174, 175). At the same time, there is a high prevalence of anxiety disorders among individuals who use cannabis (153, 176). It is unclear whether cannabis use plays a role in the development of anxiety or whether individuals with anxiety-like symptoms are more likely to use cannabis and additional research is necessary to tease apart this correlation and try to determine causal relationships. Research regarding the associations between cannabis use and anxiety remain, for the most part, inconclusive (14, 177), making it challenging to identify and prevent risks associated with drug use. Further, the variation in constituent ratios and potency across different strains of cannabis make it even more difficult to study this relationship. In this section, we discuss studies that explore the biphasic anxiogenic versus anxiolytic outcomes of cannabis and its main constituents of current interest, THC and cannabidiol (CBD), in human and animal studies (see Table), highlighting some limitations of the experiments, as well as possible future directions.

5.1. **Humans**

There is conflicting evidence for the potential therapeutic role for cannabis in stress and anxiety disorders (14). Despite the gradually-increasing evidence for therapeutic benefits to cannabis use, increased levels of anxiety have also been reported by human subjects exposed to cannabis (152, 153, 178, 179). There are many CBs and other constituents in the *Cannabis sativa* plant that could play a role in the anxiogenic and anxiolytic effects either individually, or in combination. Studies investigating the effects of cannabis on anxiety in humans have focused on the role of two key exogenous phytocannabinoids: THC and CBD. It appears as though these
constituents may work somewhat in opposition of one another, in which higher doses of THC are anxiogenic and CBD can be anxiolytic and counteract the negative effects of THC (180). With lower doses of THC, participants have been noted to experience positive effects of cannabis including relaxation, decreased subjective anxiety, and decreased catastrophizing and rumination, whereas at higher doses, participants report increases in anxiety using the visual analogue scale (VAS) scale (181, 182). One study assessed the behavioural and endocrine effects of intravenous THC in healthy individuals and found several psychotomimetic effects including: positive and negative symptoms similar to those found in schizophrenia, increased anxiety, feelings of euphoria, and impaired memory and cognition (182). Importantly, this study also identified increased levels of plasma cortisol as a result of THC administration (182). More recently however, oral CBD administration prior to intravenous THC administration inhibited THC-induced paranoia, onset of psychotic-related symptoms, and impaired memory, indicating that CBD can mitigate the adverse effects of THC (183, 184). In addition to CBD, another phytocannabinoid, Δ-9-tetrahydrocannabivarin (THCV), was assessed for its potential protective effects against intravenous THC. Orally-administered THCV before intravenous THC administration prevented the significant increases in psychotic symptoms, paranoia, impaired short-term memory, or heart rate, similarly demonstrating some protective effects of THCV against THC (185).

In humans, self-report questionnaires such as the Profile of Mood States (POMS) and the VAS are useful for assessing subjective changes in interoceptive state following cannabis exposure – including those associated with anxiety. For example, one recent study found that greater availability of CB1 receptors in the amygdala is related to greater levels of THC-induced self-report of anxiety (178). This finding indicates that depending on the extent of activation of the eCB system by THC, individuals may experience a range of changes in interoceptive state, including the cognitive interpretation of feelings of anxiety. However, such subjective effects can also be altered by cognitive expectancies. That is, when subjects were told they would receive placebo but where instead given cannabis, there was an ‘inherent conflict between the interoceptive cues from significant drug-induced physiological arousal and the instructional set’ resulting in increased anxiety (186). Psychosocial stress tests also provide evidence of biphasic self-reported changes in interoceptive awareness related to anxiety following cannabis use. In one study, participants completed several questionnaires that measure anxiety-related subjective
effects of THC consumption including: feelings of distress, drug effects, and pre- and post-task appraisals of personal performance (30). Participants also completed standardized questionnaires including the State Trait Anxiety Inventory, Perceived Stress Scale, and Perceived Stress Reactivity Scale. Importantly, these self-report measures of anxiety were validated by participants having to complete stress-inducing tasks including a mock job interview and a difficult math activity. While low-dose THC exposure reduced feelings of stress and anxiety, the individuals who received high-dose THC not only reported more stress before and during the completion of the assigned psychosocial tasks, but they also demonstrated poorer performance during the mock interview when compared to the placebo group (30).

Another reason why current research regarding the biphasic effects of cannabis on anxiety are quite subjective is because administration of exact quantities of cannabis (or its constituents) are hard to control for. In some cases, depending on the geographical location and sociopolitical era in which the study took place, this subjectivity is attributable to regulatory restrictions of cannabis, meaning administration of cannabis cannot be included into the experimental protocol. In these studies investigators cannot regulate dose, route of administration, or relative concentrations of cannabis constituents, making cannabis use incredibly varied from participant to participant. Furthermore, variations in chemical makeup across strains of cannabis can make it difficult to disambiguate the link between anxiety-related behaviours and the pharmacological action of the cannabis being administered. Recent legalization of cannabis and its constituents in Canada, however, opens up the opportunity to conduct controlled trials of cannabis, THC, and CBD administration in order to explore and elucidate the relationship between the biphasic, dose-related effects of cannabis on anxiety.

5.2. Animal Models

Unlike human participants, non-human animal subjects are incapable of directly communicating subjective changes in interoceptive state after cannabis administration. However, indirect measures of interoceptive state via their measurable behavior in tasks like the elevated plus maze, defensive withdrawal test, light-dark choice, open-field tests, conditioned taste aversion, fear conditioning, and conditioned place preference/aversion tests have demonstrated utility in assaying emotional reactivity in rodent models and provide insight into the aversive or appetitive nature of their environments and experiences. THC has been shown to generally produce conditioned place aversions at higher doses, but can produce conditioned place
preferences at lower doses \((36)\), further highlighting the variable nature of this drug as a subjective interoceptive stimulus. In the elevated plus maze, typically shaped as a plus sign or a “T” having some ends of it open while the others are enclosed \((187)\), animals spending an increased amount of time in enclosed arms and decreased time in the open arms are considered to be demonstrating an anxiety-like response. This assay has been particularly useful in revealing the anxiogenic effects of THC in both rats and mice \((188)\). Similar to that found in human research, high doses of THC elicit anxiolytic responses whereas lower doses produce anxiogenic responses \((189–191)\). One study even found evidence that females may be more sensitive to the anxiogenic effects of THC \((191)\), warranting extensive further research into the sex-dependence of THC effects. Anxiogenic effects of high-dose THC is opposite to that of the anxiolytic GABAergic agent, diazepam, and to CBD \((192–194)\). CBD has also been shown to attenuate behavioral and physiological responses to acute restraint stress via activation of serotonin 5HT1a receptors \((195)\) and it has been suggested that one of the properties of CBD may be attenuating or protecting against the adverse effects of THC \((196)\). Fear conditioning as a purported model of anxiety can also be an effective tool for assessing behavioral, neurological, and physiological responses to fear memory. Typical behaviors associated with re-exposing an animal to a context or cue that was previously paired with an aversive stimulus include freezing, response suppression, increased mean arterial pressure, and increased heart rate. The impact of THC on various measures of conditioned fear in different species have been mixed. In monkeys, THC has been shown to reduce physiological but not behavioral expression of conditioned fear \((197)\), but in rats, THC induced a fear stimulus-evoked response delay \((198)\). Like diazepam, CBD attenuates anxiety-related effects (i.e., conditioned freezing and cardiovascular responses) evoked by an aversive context in a fear conditioning task \((199)\), a finding dependent on the prelimbic cortex \((200)\). Cannabis extract itself, which purportedly would include both THC and CBD, also attenuates conditioned fear expression in rats \((201)\).

While these tools are particularly useful for observing anxiety/avoidance-related behavioral effects of phytocannabinoids, the identification of specific neuroanatomical sites underlying these effects are still being elucidated. One study demonstrated that modulation of eCB receptor activity by THC in areas of the brain dealing with emotion (i.e., the prefrontal cortex, basolateral amygdala, and ventral hippocampus) influenced anxiety-related outcomes on behavior \((202)\). According to this study, low doses of THC microinjected into the prefrontal...
cortex and ventral hippocampus elicited an anxiolytic response in rats during the elevated plus maze, with the opposite effects at high doses. In contrast, low-dose THC was anxiogenic when it was microinjected into the basolateral amygdala (202). Further, in a fear conditioning task, microinfusions of THC into the nucleus accumbens shell dose-dependently potentiated freezing evoked by a shock-associated odor stimulus (203). The role of specific brain structures and the underlying neural mechanisms involved in mediating the effects of CBD on anxiety are also being examined (Campos et al., 2012). For example, the bed nucleus of the stria terminalis appears to be a target wherein the anxiolytic effects of CBD may produce its effects, with 5-HT1a receptors being implicated in this process (205).

The efficacy of THC as an early post stress-exposure therapeutic intervention was investigated in an animal model of posttraumatic stress disorder (PTSD) (206). When THC is administered 1 h post predator scent stress (PSS) it is only effective in attenuating short term PTSD-like behavioral stress responses, whereas 24 h to 7 days later there was no persistent attenuation of these stress responses. This effect may be a result of the ability of THC to blunt the HPA-axis response in the first hours following exposure. Conversely, while CB1 receptor antagonist AM251 is anxiogenic without exposure to PSS, administration 1 h after PSS results in a reversal of these stress responses (206). These results suggest a role of eCBs in glucocorticoid regulation of the memory of traumatic experiences and help reveal potential targets for therapeutic outcomes using CBs. Finally, chronic THC exposure in adolescence results in increased anxiety-like behavior, and although acquisition and baseline levels of self-administration of heroin do not differ, chronic THC in adolescence resulted in an increased vulnerability to stress-induced relapse to heroin seeking (189). These studies demonstrate the range of limbic and stress circuitry that are impacted by THC administration.

6. **Interoception, Anxiety, and Cannabinoids**

A link between the interoceptive insula and affective disorders including depression, bipolar disorder, psychosis, and anxiety has been established but remains poorly understood. Patients with these mental health disorders display reduced grey matter volume (GMV) in the left anterior insula (AI) that is associated with deficits in neurocognitive performance, changes in the right AI GMV are associated with symptom severity, and there is a positive correlation between AI GMV and social anxiety (207). Furthermore, increased right AI activation, as
measured by fMRI, is positively correlated with the degree of social anxiety and neuroticism and negatively correlated with agreeableness and extraversion, possibly via mediation of the left thalamus (Terasawa, Shibata, Moriguchi, & Umeda, 2013). Increased activation in the IC and other emotion processing regions like the amygdala are observed in anxiety-prone individuals during processing of emotional faces as compared to healthy controls, and higher scores on anxiety measures are correlated with increased bilateral IC activation (128). Anxiety-prone individuals that exhibit less perceived control show greater activity in the dorsal AI, and the anticipation of an unpredictable threat was associated with increased skin conductance and self-reported anxiety levels as well as activation in bilateral IC, anterior midcingulate cortex, and bed nucleus of the stria terminalis (BNST) (209). This suggests that perhaps one of the ways the IC can exert its effects on anxiety is via a decrease in perceived control and increase in interoceptive awareness. In regards to morphine abstinence-related anxiety-like behavior, glutamatergic neurons in the mouse medial IC are significantly activated during withdrawal which is also associated with increased anxiety-like behaviors, and lesioning the medial IC attenuates these anxiety-like behaviors (210). Thus, insular structure and function is associated with anxiety, but it remains unclear if these alterations are a result of anxiety, or, alternatively, if they precede the occurrence of anxiety traits. These results also support the idea that increased interoceptive awareness is associated with an increase in anxiety symptoms and severity.

Interactions between the insula and the effects of CB administration have also been reported. Following administration of THC, increases in blood oxygen level-dependent (BOLD) levels in the IC have been reported and baseline brain activity was shown to be altered, evidenced by increased amplitude of fluctuations in the resting-state fMRI signal in the IC (211). Therefore, the IC may play a role in the subjective effects of the “high” associated with THC administration. Chronic cannabis users display higher anxiety scores, neurocognitive impairments, and an enhancement in functional connectivity in left AI compared to control subjects (212). Additionally, adolescents with alcohol and cannabis substance use disorders (SUDs) appear to be hypersensitive to interoceptive stimuli that are aversive in nature (213), which may be one mechanism whereby aberrant interoceptive processes evident in individuals with SUDs may impact the anxiety-like behavioural outcome. Increases in self-reported ratings of anxiety and positive psychotic symptoms have also been associated with THC administration compared to placebo, with a trend in the opposite direction for CBD, consistent with the
divergent effects of THC and CBD discussed previously (214). Indeed, unlike THC, CBD administration exerts an inhibitory effect on left IC activity (214). If the CB₁ receptor agonist THC can have these effects on functional connectivity in relation to anxiety and interoception, and CBD can have opposing effects, perhaps pharmacological manipulation within interoceptive regions, including the IC, could attenuate or reverse these effects. The CB receptors, their ligands, and enzymes that break down these neurotransmitters within brain regions associated with interoception are therefore all potential therapeutic targets to modulate resulting anxiety.

The neural mechanisms mediating the effects of the IC on anxiety and the role that the eCB system plays in these processes remain unclear, however some circuits have been identified. Connectivity between the IC and stress circuitry appear to be a critical locus where eCB signalling may facilitate anxiogenic and anxiolytic responses. Projections from the IC to the dorsal bed nucleus of the stria terminals (dBNST) appear to regulate negative affective behaviour in a CB₁ receptor mediated fashion. Decreasing neuronal activation specifically in IC→dBNST projections prevent hyperreactivity in the dBNST elicited by ethanol abstinence while increases in IC→dBNST projections resulted in negative affect and enhanced dBNST c-fos expression (215). Systemic administration of the MAGL inhibitor, JZL184, 15 days into ethanol abstinence mitigated the increases in dBNST neuronal activity, similar to when insula→dBNST projections were silenced (215), suggesting a role for 2-AG and CB₁ receptors in mediating this effect. The BNST has been shown to play a critical role in the integration of negative valence, stress reactivity, and anxiety and these results suggest that insular eCB signalling projecting to the BNST can modulate neuronal activity in the BNST and the resulting affective state (216). Bilateral intracranial administration of another MAGL inhibitor, MJN110, in the IC interfered with naloxone-precipitated morphine withdrawal conditioned place aversion and co-administration of the CB₁ receptor inverse agonist, AM251, was able to reverse this effect (217). The processing of fear memories may also be one way that the IC exerts its effects on anxiety-like behavior and has also been shown to be mediated by the eCB system. Reactivation of a fear memory followed by activation of CB receptors by the CB₁/ CB₂ receptor agonist, WIN55,212-2, in the IC resulted in enhanced fear extinction and attenuated reconsolidation of the fear memory (218). Perhaps the role of CB₁/ CB₂ receptors within the IC during the processing of fearful memories or stimuli are mechanisms whereby the IC exerts its effects on anxiety and may be a potential target for novel pharmacological therapies.
7. Concluding Remarks

The current paper reviews some of the research investigating the role of the eCB system, endogenous cannabinoids, and exogenous cannabinoids on interoception and anxiety-like behaviour in human and animal models. Despite its various medicinal and therapeutic effects, cannabis has also been known to have negative effects on mental health including high correlation with the incidence psychotic disorders such as schizophrenia, as well as affective disorders including depression and anxiety (14, 135–139). Further, the subjective interoception of CB receptor activation elicited by THC and related agonists appears to be dose dependent with higher doses increasing perception and expression of aversive qualities. The neural substrates of such effects are beginning to be elucidated and have focused thus far on fear memory (e.g., amygdala), extinction (e.g., prefrontal cortex), and reward (e.g., nucleus accumbens) circuitry. However, less published work thus far appears to target the IC, a brain region expressing CB receptors that is necessary for various interoception mechanisms. Notably, activity in this region is related to the subjective self-report of feeling a ‘high’ elicited by THC consumption (211), warranting further investigation of interoception and CB receptor activity. Alterations in the structure and function of the IC have been associated with anxiety-like behaviour and are prevalent in anxiety-prone individuals (128, 129, 207, 209), suggesting a link between increased interoceptive awareness and increased anxiety symptoms and severity. Cannabis use also appears to impact the IC and anxiety activity, such that cannabis users exhibit increased anxiety scores, enhanced functional connectivity in left AI (212), and hypersensitivity to aversive interoceptive stimuli (213). THC and CBD appear to have opposing effects on IC activity such that CBD inhibits left IC activity, where THC does not (214). Connectivity between the IC and stress circuitry, particularly the BNST, appear to be a critical locus where eCB signalling may facilitate anxiogenic and anxiolytic responses (215). Although these insights are promising, overall, the research investigating CB effects in relation to anxiety and interoception is still somewhat limited. Much of this limitation has been discussed previously within the context of strict regulatory policies for cannabis (2–5, 14). Hopefully, many of these barriers to research will fall as medicinal and recreational cannabis slowly, but steadily, loses its illicit status. With the recent legalization of recreational cannabis consumption across Canada and the steady state-by-state legalization in the United States, the need to understand how cannabis and its constituents
interact with the brain and impact behaviour has become far more urgent. Such knowledge will guide policy decisions about best practice regarding safety advisements and legal considerations regarding the use of cannabis.

Funding: Support for writing this review was not received from any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Table. Primary literature investigating phytocannabinoids in anxiety and anxiety-related behaviours. (30, 163, 192, 193, 195, 197–199, 202, 203, 205, 206, 182, 219–228, 184, 229–238, 185, 239–247, 186–189, 191)
Anxiety and Phytocannabinoids

<table>
<thead>
<tr>
<th>Subject</th>
<th>Constituent</th>
<th>Route/Brain Area</th>
<th>Dose</th>
<th>Relevant Task</th>
<th>Results</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannabis/Oil</td>
<td>Varied</td>
<td>Varied</td>
<td>Online survey</td>
<td>Establishing cannabis strain chemotype in treating anxiety</td>
<td>Kamal et al., 2018 (209)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>10 mg</td>
<td>Spielerberg state-trait anxiety inventory state subscale</td>
<td>Modest dose of THC resulted in acute induction of anxiety</td>
<td>Bhattacharaya et al., 2015 (220)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>10 mg</td>
<td>MMPI, PCL, Skin conductance, BOLD</td>
<td>Acute effects of cannabis on anxiety in males dedicated to modulation of anagryllic function by Δ9-THC, Excellent of cannabis effects on anxiety related to CB, availability</td>
<td>Bhattacharaya et al., 2017 (221)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marijuana</td>
<td>0.0, 0.1, 0.2, 2.0, 6 mg THC</td>
<td>POMS, RASS, Addiction Research Centre Inventory</td>
<td>Marijuana cigarettes increased heart rate and altered changes on several mood scales; increased feelings of anxiety were reported</td>
<td>Chek et al., 1988 (222)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral capsule</td>
<td>0.7, 15, 25 mg</td>
<td>TST, FOMS, ARO,thalox, blood pressure, salivary cortisol, PANS, STAI</td>
<td>Low doses of THC produced subject stress-relieving effects; higher doses increase stress</td>
<td>Childs et al., 2017 (20)</td>
<td></td>
</tr>
<tr>
<td>Δ9-THC</td>
<td>Intravenous</td>
<td>0.7, 2.5 mg</td>
<td>PANSS, CARDS, thalox, cortisol and prolactin</td>
<td>THC-induced schizophrenia-like positive and negative symptoms, increased anxiety, altered perception and euphoria, effects on memory, no impairments of orientation and increased plasma cortisol, all THC plasma levels</td>
<td>O'Shea et al., 2004 (247)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intravenous</td>
<td>1.5 mg every 1 min pulse for 10 min</td>
<td>Real social situation, TICC, immersive virtual reality experiment, and standard self-report and interviewer measures</td>
<td>THC increases paranoid, anomalous experiences, and negative affect. THC decreases scores on working memory. Cognitive awareness may increase paranoia although significantly and decreases catastrophizing.</td>
<td>Freeman et al., 2015 (221)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marijuana</td>
<td>20, 40, 60 mg THC</td>
<td>VAS of subjective effects, blood pressure, heart rate, repeated versus manual blood tests</td>
<td>THC increases increase anxiety up to 20 after smoking</td>
<td>Hannu et al., 2014 (224)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>10 mg</td>
<td>PANSS, STAI, attentional and emotional processing tasks</td>
<td>THC induced significant acute increase in anxiety</td>
<td>Collet et al., 2018 (25)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marijuana</td>
<td>0.0, 2.0 mg THC</td>
<td></td>
<td>Expectancy instructions and gambling play independent role in effects of THC on anxiety</td>
<td>Melas et al., 2011 (286)</td>
<td></td>
</tr>
<tr>
<td>CBD</td>
<td>Oral</td>
<td>900 mg</td>
<td>SPST, VAMS, SIPS, pathological measures</td>
<td>CBD decreased anxiety, cognitive impairment, and immunological factors</td>
<td>Bergamaschi et al., 2011 (228)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>400 mg</td>
<td>VAMS, regional cerebral blood flow at rest</td>
<td>CBD decreased subjective anxiety, increased mental flexibility</td>
<td>Crippa et al., 2004 (247)</td>
<td></td>
</tr>
<tr>
<td>Δ9-THC, CBD</td>
<td>Oral</td>
<td>10 mg, 300 mg THC</td>
<td>Response inhibition, viewing fearful faces, visual and auditory stimulation task</td>
<td>THC acute reduction of psychotropic symptoms and anxiety; CBD no change in psychotropic symptoms and trend for a reduction in subjective anxiety</td>
<td>Bhattacharaya et al., 2010 (277)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intravenous injection, Oral</td>
<td>10 mg, 200 mg</td>
<td>State Social Parallels Scale</td>
<td>Support the thesis that high-THC/low-CBD cannabis products are associated with risk for mental health</td>
<td>England et al., 2013 (104)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>10 mg, 800 mg THC</td>
<td>MMPI while looking at different anxiety-inducing photos</td>
<td>THC increases probability of social contact and decreased anxiety.</td>
<td>Fusz-Rossi et al., 2009 (229)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>10 mg, 300 mg THC</td>
<td>PANSS, ARO, thalox, blood pressure, heart rate</td>
<td>THC increased anxiety, depression, positive psychotic symptoms</td>
<td>Martin-Santos et al., 2012 (229)</td>
<td></td>
</tr>
<tr>
<td>THC, Δ9-THC</td>
<td>Oral, Intravenous</td>
<td>10 mg, 10 mg</td>
<td>CARE, VAMS, State Social Parallels Scale, The University of Wales Mood Adjective Checklist</td>
<td>Description of some protective effects of THC against THC</td>
<td>England et al., 2016 (104)</td>
<td></td>
</tr>
<tr>
<td>Rhinos</td>
<td>Animals</td>
<td>Δ9-THC</td>
<td>0.2, 1, 10 mg/kg</td>
<td>Conditioned fear</td>
<td>Physiological expression of conditioned fear</td>
<td>Buxton et al., 1979 (107)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10–100 μg/kg</td>
<td>Conditioned fear</td>
<td></td>
<td>Fysh et al., 2010 (287)</td>
</tr>
<tr>
<td></td>
<td>intraperitoneal</td>
<td>3 mg/kg</td>
<td>Conditioned emotional response paradigm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>intraperitoneal</td>
<td>2,5 mg/kg</td>
<td>Conditioned emotional response paradigm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>intraperitoneal</td>
<td>2, 5, 7.5 mg/kg</td>
<td>Lesion of amygdala</td>
<td>Low dose anxiolytic, high dose anxiogenic; female more sensitive to anxiogenic effects</td>
<td>Hans-Lang et al., 2012 (130)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>intraperitoneal</td>
<td>1, 5, 10 mg/kg</td>
<td>Predator stress, installed plus maze, auditory startle response, freezing, corticosterone levels</td>
<td>THC 5 mg/kg decreases anxiety-like behaviors only if immediately following stress and significantly decreases corticosterone levels response when administered 1h post stress</td>
<td>Mayer et al., 2014 (206)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral gavage</td>
<td>10 mg/kg</td>
<td>Elevated plus maze, social behaviour tests, open arm activity</td>
<td>No effects on anxiety</td>
<td>Mohamed et al., 2018 (222)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PFC, Hypocampus, and basal amygdala</td>
<td>2.5, 5, 10 μg</td>
<td>Elevated plus maze</td>
<td>Anxiolytic responses were produced when low doses of THC were microinjected into the PFC and ventral hippocampus; low doses of THC produced anxiolytic effects when microinjected in basolateral amygdala</td>
<td>Rubino et al., 2008 (202)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>intraperitoneal</td>
<td>3 mg/kg</td>
<td>Elevated plus maze</td>
<td>THC reduced anxiety in anxiety in pre-pubertal animals</td>
<td>Silva et al., 2006 (233)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>intraperitoneal</td>
<td>2.5, 5, 10 μg</td>
<td>Elevated plus maze, +/− heroin self-administration</td>
<td>THC elicited reductions in anxiety in pre-pubertal animals adolescent chronic THC exposure rats show increased anxiety-like behavior and increased stress-induced reinstatement of heroin seeking</td>
<td>Stoppani et al., 2014 (189)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subcutaneous</td>
<td>3 mg/kg</td>
<td>Elevated plus maze</td>
<td>THC elicited anxiolitic-like effect</td>
<td>Uli et al., 2018 (234)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>intraperitoneal</td>
<td>4 μg/mg & 30 μg/mg & injection</td>
<td>Attenuation of conditioned fear</td>
<td>Attenuation of conditioned fear due to increased anxiety</td>
<td>Ader et al., 2008 (234)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dIPAG</td>
<td>0.1, 0.2 or 0.5 mg/kg</td>
<td>Elevated plus maze, VCT</td>
<td>CBD anxiolytic effect in FPM prevented by WAY100635 but not AEA58</td>
<td>Campos & Guimarães, 2008 (226)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>intraperitoneal</td>
<td>20 mg/kg for 14 days</td>
<td>Lesion, conditioned emotional response, frontal cortex and hippocampus western-biting</td>
<td>Chronic CBD anxiolytic-like effect and decrease in expression of proteins enhanced with antidepressant/anxiolitics</td>
<td>Tashch et al., 2012 (236)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1, 20 mg/kg</td>
<td>Elevated plus maze, VCT</td>
<td>CBD anxiolytic effect blocked by WAY100635</td>
<td>Gomes et al., 2011 (205)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>intraperitoneal</td>
<td>1, 2, 16 mg/kg</td>
<td>Cardiovascular response, freezing behavior, elevated plus maze</td>
<td>CBD attenuates anxiety related effects</td>
<td>Resvold et al., 2005 (209)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1, 20, 30 mg/kg</td>
<td>Restraint stress, elevated plus maze</td>
<td>CBD attenuates anxiogenic response from RS and WAY100635 blocked the effects of CBD</td>
<td>Resvold et al., 2009 (205)</td>
<td></td>
</tr>
<tr>
<td>Δ9-THC, Δ8-THC, CBD</td>
<td>Intraperitoneal</td>
<td>0.1–0.5 mg/kg, 5 mg/kg</td>
<td>Footshock stress exposure, elevated plus maze, light-dark box</td>
<td>THC and CBD reduce anxiogenic-like behaviors caused by prior stress; THC does not reduce anxiogenic-like behaviors caused by prior stress</td>
<td>Rock et al., 2017 (102)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>intraperitoneal</td>
<td>0.3–10 mg/kg, 1–2 mg/kg</td>
<td>Elevated plus maze, light-dark box</td>
<td>THC antagonists functioned to diminish the anxiogenic effects of THC</td>
<td>Orsini et al., 1990 (188)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5, 40 mg/kg</td>
<td>Conditioned fear</td>
<td>THC reduced a conditioned fear stimulus evoked response delay</td>
<td>Robichaud et al., 1973 (208)</td>
<td></td>
</tr>
<tr>
<td>Δ9-THC</td>
<td>Intraperitoneal</td>
<td>0.5 mg/kg</td>
<td>Stress exposure, light-dark box test</td>
<td>THC prevents anxiety-like behavior caused by 2-AG depletion</td>
<td>Bede et al., 2017 (237)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systemic injection (route unknown)</td>
<td>0.25 mg/kg</td>
<td>Footshock stress exposure, elevated plus maze, light-dark box test, open field test</td>
<td>THC reduced anxiety-like behaviour; promotes stress resilience</td>
<td>Blaust et al., 2017 (238)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intraperitoneal</td>
<td>10 mg/kg</td>
<td>Cannabinol smoke exposure decreased anxiolytic-like behavior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intraperitoneal</td>
<td>3 mg/kg</td>
<td>THC-impaired sensitive mice had increased anxiety when given THC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intraperitoneal</td>
<td>3, 10 mg/kg</td>
<td>Elevated plus maze, open field activity, exploratory response, prepulse inhibition</td>
<td>THC result in incoherent activity</td>
<td>Koyen et al., 2018 (240)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intraperitoneal</td>
<td>3, 10 mg/kg</td>
<td>Elevated plus maze, light-dark box test, Social interaction test, Prepulse inhibition</td>
<td>THC reduced anxiety-like behavior; lead to increased anxiety in adulthood</td>
<td>Lloyd et al., 2016 (247)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intraperitoneal</td>
<td>10 mg/kg</td>
<td>Elevated plus maze, Fmz, Pra, striatum paradigm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBD</td>
<td>Intraperitoneal</td>
<td>20 mg/kg</td>
<td>Elevated plus maze</td>
<td>CBD produce anxiolytic</td>
<td>Myers et al., 2018 (244)</td>
<td></td>
</tr>
<tr>
<td>Δ9-THC, CBD</td>
<td>Intraperitoneal</td>
<td>3 mg/kg, 3 mg/kg</td>
<td>Open field, elevated plus maze</td>
<td>THC increases THC administration to isobutyl alcohol for behavior caused in anxiety; CBD alone had no effect</td>
<td>Murphy et al., 2017 (245)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intraperitoneal</td>
<td>30 mg/kg, 10 mg/kg</td>
<td>Open field test, light-dark box test, Social interaction test, Prepulse inhibition</td>
<td>CBD attenuates anxiogenic THC effects on anxiety</td>
<td>Todd & Arnold, 2016 (246)</td>
<td></td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Meaning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-AG</td>
<td>2-arachidonoyl-glycerol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-AGE</td>
<td>2-arachidonoyl glyceryl ether; 2-AGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-HT</td>
<td>5-hydroxytryptamine; serotonin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEA</td>
<td>Anandamide, N-arachidonoylethanolamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>Anterior insula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCI</td>
<td>Addiction research center inventory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOLD</td>
<td>Blood oxygen level-dependent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNST</td>
<td>Bed nucleus of the stria terminalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CADSS</td>
<td>Clinician administered dissociative symptoms scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPE</td>
<td>Community assessment of psychic experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Cannabinoid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB₁</td>
<td>Cannabinoid receptor 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB₂</td>
<td>Cannabinoid receptor 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBD</td>
<td>Cannabidiol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBG</td>
<td>Cannabigerol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRH</td>
<td>Corticotropin releasing hormone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dBNST</td>
<td>Dorsal bed nucleus of the stria terminalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCB</td>
<td>Endocannabinoid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPM</td>
<td>Elevated plus maze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAAH</td>
<td>Fatty acid amide hydrolase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma amino butyric acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMV</td>
<td>Grey matter volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPCR</td>
<td>G-protein coupled receptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPR119</td>
<td>G protein-coupled receptor 119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPR55</td>
<td>G protein-coupled receptor 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPA</td>
<td>Hypothalamic-pituitary-adrenal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>Insular cortex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAGL</td>
<td>Monoacylglycerol lipase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NADA</td>
<td>N-arachidonoyldopamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEA</td>
<td>Oleoylethanolamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAE</td>
<td>Virodhamine, O-arachidonoyl ethanolamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANSS</td>
<td>Positive and negative symptom scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PASA</td>
<td>Primary appraisal secondary appraisal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFC</td>
<td>Prefrontal cortex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POMS</td>
<td>Profile of mood states</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTSD</td>
<td>Posttraumatic stress disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Restraint stress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPST</td>
<td>Simulation public speaking test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSPS-N</td>
<td>Negative self-statement scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAI</td>
<td>State trait anxiety inventory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUD</td>
<td>Substance use disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THC</td>
<td>Δ-9-tetrahydrocannabinol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THCV</td>
<td>Δ-9-tetrahydrocannabinvarin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSST</td>
<td>Trier social stress test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAMS</td>
<td>Visual analogue mood scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAS</td>
<td>Visual analog scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VCT Vogel conflict test
References

7. E. Macrae, “Santo Daime and Santa Maria-The licit ritual use of ayahuasca and the illicit use of cannabis in a Brazilian Amazonian religion” (1998).

75. E. S. Onaiivi *et al.*, Brain neuronal CB2 cannabinoid receptors in drug abuse and

113. R. Refinetti, H. J. Carlisle, A reevaluation of the role of the lateral hypothalamus in

134. V. Agosti, E. Nunes, F. Levin, Rates of psychiatric comorbidity among U.S. residents

172. R. Imperatore et al., Genetic deletion of monoacylglycerol lipase leads to impaired

183. A. Englund, T. P. Freeman, R. M. Murray, P. Mcguire, “Can we make cannabis safer?”

200. S. N. Hatton *et al.*, “Correlating anterior insula gray matter volume changes in young
people with clinical and neurocognitive outcomes: an MRI study” (2012).

225. M. Colizzi et al., Previous cannabis exposure modulates the acute effects of delta-9-

Highlights

- Rapidly-changing legal status of cannabis increases the urgency to understand its effects
- Endocannabinoid system modulates anxiety
- Cannabis and tetrahydrocannabinol have biphasic effects on anxiety in humans and animals
- Other phytocannabinoids modulate tetrahydrocannabinol effects
- Cannabinoids show promise for drug development to treat anxiety